Effect of RP51 gene dosage alterations on ribosome synthesis in Saccharomyces cerevisiae.

نویسندگان

  • N Abovich
  • L Gritz
  • L Tung
  • M Rosbash
چکیده

The Saccharomyces cerevisiae ribosomal protein rp51 is encoded by two interchangeable genes, RP51A and RP51B. We altered the RP51 gene dose by creating deletions of the RP51A or RP51B genes or both. Deletions of both genes led to spore inviability, indicating that rp51 is an essential ribosomal protein. From single deletion studies in haploid cells, we concluded that there was no intergenic dosage compensation at the level of mRNA abundance or mRNA utilization (translational efficiency), although phenotypic analysis had previously indicated a small compensation effect on growth rate. Similarly, deletions in diploid strains indicated that no strong mechanisms exist for intragenic dosage compensation; in all cases, a decreased dose of RP51 genes was characterized by a slow growth phenotype. A decreased dose of RP51 genes also led to insufficient amounts of 40S ribosomal subunits, as evidenced by a dramatic accumulation of excess 60S ribosomal subunits. We conclude that inhibition of 40S synthesis had little or no effect on the synthesis of the 60S subunit components. Addition of extra copies of rp51 genes led to extra rp51 protein synthesis. The additional rp51 protein was rapidly degraded. We propose that rp51 and perhaps many ribosomal proteins are normally oversynthesized, but the unassembled excess is degraded, and that the apparent compensation seen in haploids, i.e., the fact that the growth rate of mutant strains is less depressed than the actual reduction in mRNA, is a consequence of this excess which is spared from proteolysis under this circumstance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibitory Effect of Supernatant and Lysate of Saccharomyces cerevisiae on Expression of exoA Gene of Pseudomonas aeruginosa

Background and Aim: Pseudomonas aeruginosa is an important ubiquitous and especially common pathogen in the hospital. Exotoxin A that encoded by exoA gene has a role in pathogenesis of this bacterium. Today, probiotics are widely used in the treatment and prevention of diseases. The present study aimed to study the Saccharomyces cerevisiae S3 effect on the expression of exoA gene. Materials an...

متن کامل

Further evidence that the rna2 mutation of Saccharomyces cerevisiae affects mRNA processing.

The relative rate at which ribosomal protein 51 (rp51) mRNA is synthesized was measured by pulse-labeling cells in vivo with [3H]adenine. Two strains of Saccharomyces cerevisiae were compared: A364A (wild type) and ts368 (rna2), a temperature-sensitive strain in which the level of rp51 mRNA decreases and an intron-containing rp51 precursor RNA increases. When cells were shifted up to the nonper...

متن کامل

Effect of Processed Lemon Pulp With Saccharomyces Cerevisiae Yeast on Protein and Energy Metabolism in Raini Goats

The aim of present study is investigating effect of treated lemon pulp by Saccharomyces cerevisiae yeast on protein and energy metabolism in goats was fed with this product. In this experiment 8 goats from raini breed were used for 21 days period; 16 days for adaptation and 5 days for sampling, to investigate the effect of processing lemon pulp by Saccharomyces cerevisiae yeas...

متن کامل

The KRR1 gene encodes a protein required for 18S rRNA synthesis and 40S ribosomal subunit assembly in Saccharomyces cerevisiae.

The newly discovered Saccharomyces cerevisiae gene KRR1 (YCL059c) encodes a protein essential for cell viability. Krr1p contains a motif of clustered basic amino acids highly conserved in the evolutionarly distant species from yeast to human. We demonstrate that Krr1p is localized in the nucleolus. The KRR1 gene is highly expressed in dividing cells and its expression ceases almost completely w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 5 12  شماره 

صفحات  -

تاریخ انتشار 1985